Ghant“ 1. .

loser Look at Methods and Classes |

ou can see, each time ineyrp Te

As y hg ®]() i v
. o 1t 18 returned to Hya w11 Siny

f{'fClOnCC:eCEdin " rc}“lﬂ the Lﬂ]]lng r } :’lkl‘d’ a new Ubi('(?t ™ (‘r(.’:'ltl-'(lf aﬂ(l d
The p 8 Program makeg gy ine

. L ' 1 .
d nalfmcally ;’;llocalectlusmg NeW, yoy o, MPortant point: Since all objects are |
.of-scope because the me : , Need e in
i e tg exist as long a tltIIOd"'] Which it yyqq 1o worty about an object I‘;'({ct%vi
corl'flll:l:here iy refe§e11sc ; lell‘e 1S A referenq lto itlrealod terminates. The Ubl:am
d - 35 | LS . S » 1 0 4
When Y O t, the abjeey yjy 1. 2OMeWhere in your prog o
collection takes place. Willbe reclaimed the next time garbas

O s e

==

J Recursion A s Pt

orts recursion. R, SR
.:l;?fsis it relates to Java ;?:,rsmn = _the Process of defining something in terms of
to call itself. A method that calls itself is saiq to b arioute tha

St said to be 7 :
© The classic example of recursion ; ecursive,
M 1S the co i - ber.
The factorial of a ' Mputation of the factorial of a num

roduct of all the whole numbers between 1 and N.

For example, S tactorialis T x 273:W(Z‘- Here is how a factorial can he_mmputed b!.

use of a recursive method:

e ———

// A simple example of recursion,
class Factorial {
// this is a recursive function
int fact{inkt n) {
int result;

if(n==1) return 1;
result = fact(n-1) * n;
return result;

class Recursion { ‘
public static void main(String args([]) {
Factorial f = new Factor;’.al():

System.out.println("Factorial of 3 is " '+ f.fact(3));
System,out println("Factorial of 4 is " + f.fact (4))
System.out print‘_ln("Fc'iCtOrial of 5 is " + f.fact(5));

_____--llll..lllIlIlIIlII.I.I........III----__

o Scanned with CamScanner

Java™ 2: The Complete Reference

. : e
The output from this program 18 shown her

Factorial of 3 is 6
Factorial of 4 is 24

Factorial of 5 is 120

. iliar with recursive methods, then the opcrntior.l of fact() may
50012 .?\T::lchfntfl:ii?;l;;;w is how it works. When ffl;ﬂ) is ;:z;]le:: Wlll)l': ﬂn'I:“SUmcnt of
1. the function returns 1; otherwise it returns the pro Lfct e ac lt‘ll— n. (]) evaluate
this expression, fact() is called vtrith n—1. This process repeats until n equals 1 and the
»oin returning.

callhflngl‘tiezlﬁ:?;irsﬁ:i?1::):\: ihe fact() method wotks, let's go throug- Ehort
example. When you compute the factorial of 3, the first Call, 0 fac.t(I will cavee &

o be made with an argument of 2. This invocation will cause fact() to
second call to be T ent of 1. This call will return 1, which is then

ird time with an argum : ; P
be called a thir econd invocation). This result (which'is 2) is

iplied b 2thevalueofninthes hus s .
mr;hixies to(the original invocation of fact() and multiplied by 3 (the original

y is yi ; i ind it i ting to insert println()
£). This yields the answer, 6 You might find it interesting t p
:ta: tl::n(:nrtlg into f:ct() which will show at what level each call is and what the

intermediate answers are. .
When a method calls itself, new local variables and parameters are allocated

storage on the stack, and the method code is executed with these new variables

from the start. A recursive call does not make a new copy of the method. Only

the arguments are new. As each recursive call returns, the old local variables and
arameters are removed from the stack, and execution resumes at the point of the

call inside the method. Recursive methods could be said to “telescope” out and back.

Recursive versions of many routines may execute a bit more slowly than the

iterative equivalent because of the added overhead of the additional function calls.
Many recursive calls to a method could cause a stack overrun. Because storage for
parameters and local variables is on the stack and each new call creates a new copy of
these variables, it is possible that the stack could be exhausted. If this occurs, the Java
run-time system will cause an exception. However, you probably will not have to
worry about this unless a recursive routine runs wild.

The main advantage to recursive methods is that they can be used to create clearer
and simpler versions of several algorithms than can their iterative relatives. For
example, the QuickSort sorting algorithm is quite difficult to implement in an iterative
wa y.‘Somc Problems, especially Al-related ones, seem to lend themselves to recursive

solutions, Finally, some people seem to think recursively more easily than iteratively.
When writing recursive methods, you must have an if statement somewhere to
force the method to return without the recursive call being executed. If you don’t do
‘his, once you call the method, it will never return, This is a very common error in
vorking with recursion. Use printin() statements liberally during development so that

Scanned with CamScanner

oy
—)

e .

._)- {

1 Cha t Iasses
Pter 7: A c‘nser Liiikit Meth“ds alld C

you cdn watch what ;

// Anothe
I example that uses re
Cursion,

class RecTest (
int values(]/

RecTest (int i) {

Vall.iles = new lnt[l];
}

// display array -- recursively
void printArray (int i) ¢
if(i==0) return;
else printArray{i~l);
System.out.println("[" + (i-1) + =] * & values[i-11)7

}

class Recursion2 ({
public static void main(String args[]) {(
RecTest ob = new RecTest (10);

int i;
for (i=0; i<10;:ti++) ob.values[i] = i;
ob.printArray (10);

)

This program generates the following output:

o

(0)
[1]
[2)
(3]
(4]
(5]
[6]

(=2 T O B S O B N S

B ———

Scanned with CamScanner

e

2 lete Ref
?--jla he Comp erence

'1;---3 m 2T

[PPT
(8] 8
(919

- ey S R P T e

- A ————— a—r———

T introducing Access Control
As you lmowc_gg_c_apsulaﬁon links data with the code that manipulates it. However,
another important attribute: access control.Through o

encapsulation provides
encapsulal control what parts of a program can access the members of
s, you can prevent misuse, For example, allowing access to

: By controlling acces
._fjlftias;njlfy through a Well'dmu can prevent the misuse of that
data. Thus, when correctly implemented, a class creates a “black box” whichmaybe
used, but the inner workings of which are not open to tampering. However, the classes
that were presented earlier do not completely meet this goal. For example, consider the
Stack class shown at the end of Chapter 6. While it is true that the methods push()and
trolled interface to the stack, this interface is not enforced. That

pop() do provide a con s
is, it is possible for another part of the program to bypass these methods and access the
stack directly. Of course, in the wrong hands, this could lead to trouble. In this section

you will be introduced to the mechanism by which you can precisely control access to

the various members of a class. ;.
d is determined by the access specifier that modifiesits =

How a member can be accesse
h set of access specifiers. Some aspects of a contro

declaration, Java supplies a ric
are related mostly to inheritance or packages. (A package is, essentially, a grouping of

“Tasses.) These parts of Java’s access control mechanism will be discussed later. Here,
let’s begin by examining access control as it applies to a single class. Once you
understand the fundamentals of access control, the rest will be easy.

Java’s access specifiers are public, private, and protected.Java also defines a

¢cess specifiers are described next. -
Let's begin by defining public and private. When a member of a class is modified
by the public specifier, then that member can be accessed by any other code,When a
that member can only be accessed by

“member of a class is specified as private, then an ¢
ain() has always been

other members of its classgNow you can understand why m
It is called by code that is outside the program—that

preceded by the public specifier,,
pecifier is used, then by default the

is, by the Java run-time system. When no access s
member of a class is public within its own package, but cannot be accessed outside of

Tts package | (Packages are discussed in the following chapter.)
In the classes developed so far, all members of a class have used the default access

mode, which is essentially public. However, this is not what you will typically want
to be the case. Usually, you will want to restrict access to the data members of a
class—allowing access only through methods. Also, there will be times when you

will want to define methods which are private to a class.

s TR gy e N
A ke =

Ty,

Scanned with CamScanner

classes

5"‘1': A Closer Look at Methods o

An access specifier Precedes (e

must begin a member’s dvelan rest of a member’s type

ation state .
AHon statement, Here is an example:

public int i;
private double i;:

R s e IMethod (16F a, ehar by § /7
To understand the effe ; /
cts of ublic ; r'iSlder t

program: : public and private access, c0

/* Thls program demonstrates the difference betweern
public and private.

x5
class Test {
int a; // default access
public int b; // public access
" private int c¢; // private access

// methods to access c¢

void setc(int i) { // set c's value
¢ = 13

}

int getc() { // get c's value
return c;

}

class AccessTest {
public static void main(s
Test ob = new Test ()¢

tring args[]) {

// These are OK, a and b may be accessed directly

ob.a = 10;
ob.b = 20;

// This is not OK and will cause an error

// ob.c = 100; // Error!
u wpust access C through its methods
// OK

// Yo
ob.setc(100);

 —— R ——

5peciﬁcﬂti0n‘

T‘hat 15/ it

he following

Scanned with CamScanner

(@)

Java™ 2: The Complete Reference

‘LB LI 1 MY v - .-
gyatemn,out . BFYAN In(®na, b, and e L DA

ob.b ¢ * * 4 ah.gete());

As vou can see, inside the Test class, a uses default access, which for this e
& P . ; 3 A
is the same as specifying public. b is explicitly specified as public, Memi . . Ple
= b . . % - Yiva
private access. This means that it cannot be accessed by code outside of i« class Ei"n
-

neide the AccessTest class, ¢ cannol be used directly. It must be accessed throngh
sublic methods: sete() and gete(). If you were to remove the comment SVmbq|)f)n "
ou ’ m

‘he beginning of the fottowing tine;™

I /7 ob.c = 100; /7 Error!

hen you would not be able to compile this program because of the access violation
To see how access control can be applied to a more practical example, consider

th
ollowing improved version of the Stack class shown at the end of Chapter 6. 3

* This class defines an integer stack that can hold 10 values.
class Stack {
/* Now, both stck and tos are private. This means
that they cannot be accidentally or maliciously
altered in a way that would be harmful to the stack.
ol
private int stck(] = new int[10];
private int tos;

// Initialize top-of-stack
Stack() {
tos = -1;

// Push an item onto the stack
void push(int item) ({

if(tos==9)
System.out,println("Stack is tnll. ")
else

stck[++tos] = item;

Scanned with CamScanner

Chapter 7, 4 classes

= N Closer Look at Methods @7

{/ Pop an item from the
int pop() ({ S SCEE
if(tos < 0) {

SYStem. x|
Out.pl 1ﬂt.ln("Sta 1}(e ow
: (_ 1]nd rf] L ") ;

}
else
return stck[tos__].

As you can see, now both stck, whi | . h is the index of
the top of the stack, are specified asv;l:iil;tléﬂl{‘:l}?j;h; s;ik;}:l;ittz;’;ﬂh;‘o ¢ e accessed Of
altered except through push() and pop(). Making tos private, for example, prevents
other parts of your program from inadvertently setting it to a value that is beyond the
end of the stck array. & -
The following program demonstrates the improved Stack class. T
commented-out lines to prove to yourself that the stck and tos members are,

inaccessible. . " _

ry removing the
- are, indeed,

class TestStack (
public 'static void main(String args[]) {
Stack mystackl = new Stack();
Stack mystack2 = new Stack():

// push some numbers onto the stack
for (int i=0; 1i<10; 1i++) mystackl.push(i);
for(int i=10; 1<20; 1++) mystackz.push(i);

// pop those numbers off the stack
System.out.println("Stack in mystackl:");

for (int i=0; i<10; i++) :
System.out.println(mystackl.pop(}J:

System.out .println (vStack in mystack2:");

for (int i=0; 1i<10; i+4)
System.out.println(mystaCk2-90p()):

// these statements are not legal

// mystackl.tos = -2

// mystack2.stck[3] = 100;

Scanned with CamScanner

1

76 ‘f;lln"" 2: The Complete Reference

}
)

Although methods will usu
does not always have to be the case.

ally provide access to the data defined by a class, this

It is perfectly proper to allow an instance variabj y,,
be public when there is good reason to do so. For exa mp'le, most of the simple classes i,
this book were created with little concern about controlling access to 11.15tance variables
for the sake of simplicity. However, in most real-world c:lassesf you will need to allow
operations on data only through methods. The r.lext chapter will return to thc-' topic of
access control. As you will see, it is particularly important when inheritance is involyeq.

;J Understanding static

There will be times when you will want to define a class member that will be used
independently of any object of that class. Normally a cla§s .membgr must be accessed
only in conjunction with an object of its class. However, it is possible to create a
Trember that can be used by itself, without reference to a specific instance. To create

- itsdeclaration with the keyword static. When a member is
dectared static, it can be accessed before any objects of its class are created, and without
mm declare both methods and variables to be static. The
“most common example of a static member is main(). main() is declared as static
because it must be called before any objects exist.

Instance variables declared as static are, essentially, global variables. When objects
of its class are declared, no copy of a static variable is made. Instead, all instances of the
class share the same static variable.

Methods declared as static have several restrictions:

M They can only call other static methods.
B They must only access static data.

M They cannot refer to this or super in any way. (The keyword super relates to
inheritance and is described in the next chapter.)

If you need to do computation in order to initialize your static variables, you can
declare a static block which gets executed exactly once, when the class is first loaded.
The following example shows a class that has a static method, some static variables.
and a static initialization block:

// Demonstrate static variables, methods, and blocks.
class UseStatic (

Scanned with CamScanner

" O
Chapter 7: A Closer Look a0V ™7

¢ void meth(int x) {

gtati .
system.out.prlntln("x « B 3 wifn
system.OUE-println{“a 5 Wy @iy
Sy.stem.out.println(“b e W o h];

}
static {

system.out.prlntln("static BlGEk initialized-")*
b:a*4:

}

public static void main(String args(]) {

meth(42);
}

UseStatic class is loaded, all of the static stat
aruifhnaﬂ.:

; As soon as the

ereutes (prin WQL’J”-Z_ZE to X
“nitialized to a * 4 or 12. Then main(] is called, which calW
m—z@mments refer to the two static variables a ane o as well a3

to the Jocal variable x. .

-ﬂ-' . " . .
Ml It is illegal to refer to any instance variables inside

Here is the output of the program:

of a static method. -

gtatic block initialized.

x = 42
2= 3
S e ¢

' Outside of the class in which they are defined, static methods and variables can be
 used independently of any object. To do so, you need only specify the name of their
' class followed by the dot operator. For example, if you wish to call a static method

do so using the following general form:

' from outside its class, you can

|

Scanned with CamScanner

S ————

|:I‘alilur 7.

Subsequent parts of youy

. "

constants, without {v};r il Program €N Nowy yep 1
ar that a valye has beg ‘-‘T FILE_OPEN, cte., as if they were

»been changeq

red,

Itis a common codj
: mon coding convention yg g, .
1005 all uppercase identifiers for final

variables. Variables declared

S5 2 e as fing

Thus, a final variable g Csser 11 do noy occupy memory on a per-instance basis.
a4 conslang,

The keyword final can al

: so be ; - .
fferent than when it s applied t()1$i‘lit‘.i,£‘l_l_rj_g!|1nd5, but its meaning, is substantially
the next chapter, when inheritance Hﬂ(ri;:blc:,-, This second usage of final is described in
SCribed, g e

wially

JArmays Revisited -

Arrays were introdu sarlia i

that }):0“ know ﬂboutcsgsts;::mr In this book, before classes had been discussed. Now

implemented as objects Bec-,;ﬂn lmpm.‘lam point can be made about arrays: they are

int o take advant " p use gf this, there is a special array attribute that you will
advantage of. Specifically, the size of an array—that is, the number of

ﬁti?;etxz i};artl :k:'i ar:‘a}‘;l can !_mld—-is found in its length instance variable. All arrays

B nnstrates ‘hiZ’}:rr{‘)p::ll"tyv:“ always hold the size of the array. Here is a program that

T s,

// This program demonstrates the length array member.
class Length {
public static void main(String args([]) {
int al[] = new int[10];
int a2l & {3,755 Tz 1. B, 99, 44, -10};
int a3[] = {4, 3, 2, 1}:

System.out.println("length of al is " + al.length);
System.out.println("length of a2 is " + a2.length);
System.out.println("length of a3 is " 4+ a3.length);

—

This program displays the following output:

length of al is 10
length of a2 is 8
length of a3 is 4

As you can see, the size of each array is displayed. Keep in mind that the value of
length has nothing to do with the number of elements that are actually in use. It only
reflects the number of elements that the array is designed to hold.

A Cloyey Look at Methods and Classes |

2020/09/18 11:06

Scanned with CamScanner

Jaya™ 2: The Complete Reference

i situations. For example

mgmmuannmmwbl ; ;

) it the length member : k!

3) ou can’Pllj it s %; the Stack class. As you might -recalJ, ll?c earlier version

:;iznchuzpl:lj:\t;ys created a ten-element stack. The following version lets you creaf
F 5] LA

stacks of any size. The value of stck.length is used to prevent the stack from

overflowing.
proved Stack class that uses the length array member.

S/ Im
class*Stack |
private int stckl]:

private int tos;

// allocate and initialize stack

Stack(int size) (
stck = new int[size];

tos = =il;

// Push an item onto the stack

void push(int item) ({
if(tos==stck.length-1)
System.out .println(*Stack is full.*);

// use length member

else
stck(++tos] = item;

// Pop an item from the stack

int pop() {
if(tos <« 0) {
System.out.println("Stack underflow.");

return 0;

}
else
return stck(tos--];

class TestStack2 ({
public static void main(String args(]) {

Stack mystackl new Stack(5);
Stack mystack2 new Stack(8);

I

Scanned with CamScanner

Cha g
pter 7: A Closer Look at Metheds and Classes

), push some numbers ony
{4 - 0O the ot
- Btack

ii*] my et ackl)
{for (int 1=0; i<B; i4a) my st SURNALY

for(int i=0; 1<9;

-ack2 ., push (i) ;

fij gep EAEES T.l'tlmh(grs off the stack

SYStem.m-ﬂ: -pr%nL:hu“St“Ck in mystackl:");

for (int 1=0; 1<5; i+4) R
SYSLem'Out'pri“tlnimYstackl.pop[l):

system.out.println("Stack in mystack2:");
for (int 1=0; 1<8; i++)
Ssystem.out.println(mystack2.pop()) ;

Notice that the program creates two stacks: one five elements deep and the other
eight elements deep. As you can see, the fact that arrays maintain their own length g

information makes it easy to create stacks of any size. W ¢,

. B

Ihﬁdducing Nested and Inner Classe

Itis possible to define a class within another class; such classes are known as 1es ted classg.)
The scope of a nested class is bounded by the scope of its enclosing, class. Thus, if class B1s
defined within class A, then B is known to A, but not outside of A. A _rﬁs’t_’_eddﬁs_haﬁ-ﬁgc—ess

mg private members, O class in which it is nested, However, the
enclosing class does not have access to the members of the nested class. i)

There are two types of nested classes: static and non-static. A static neste class is one
which has the static modifier applied. Because it is static WE
its enclosing class W. That is, it cannot refer to members of its enclosing
Jass directly. Because of this restriction, static nested classes are seldom used.

The most important type of nested class is the inner class. An inner class is a
non-static nested class. It has access to all of the variables and methods W
and may refer to them directly in the same way that other non-static mem ers of the
uter class do. Yhus, an inner class 15 fully within the scope of its enclosing class.

The following program illustrates how to define and use an inner class. The class

named Outer has one instance variable named outer_x, one instance method named
test(), and definjes one inner class called Inner.

// Demonstrate an inner class.
Class OQuter (
int outer_x = 100;

Scanned with CamScanner

181

3

m Java™ 2: The Complete Reference

void test () o
Inner inner = new Inner():

inner.display():

this is an inner class

class Inner ({

void display() {
= - ¢ = - + out er-x} :
Svstem.out.println('dlspla} outer_x t

InnercClassDemo {
blic static void main(String args(]) {
Quter outer = new Outer();

outer.test():

Output from this application is shown here:

display: outer_x = 100

In the program, an inner class named Inner is defined within the scope of dlass
Outer. Therefore, any code in class Inner W%Ew
instance method named display() is defined mside Inmer: This meth isplays
outer_x on the standard output stream. The main() method of InnerClassDemo
creates an instance of class Outer and invokes its test() method. That method creates
an instance of class Inner and the display() method is called.

It is important to realize that class Inner is known only within the scope of class
Outer. The Java compiler generates an error message if any code outside of class Outer

attempts to instantiate class Inner. Generalizing, a nested class is no different than any

other program element: it is known only within its enclosing scope.
/ As explained, an inner class has access to all of the members of its enclosing class,
. x

cerse is nof frue. Members of the-inmertlass are kKnown only within the sogpe

eouter class. For example

.&‘iﬂner class and may not be used by

Scanned with CamScanner

Chapt A
Pler 7. A e'.s.r l..k at .'t.." "‘ clasSIS i

this program will not compile,
¢ outer

r outer_X 100;

\'Did test“ {
Inner inner = new Inner(),

inner.display();

,; this is an inner class

class Inner ({

int y = 10; // y is local to Inner

void display() {
System.out.println("display: outer_x = " + outer_X):

}
I

void showy () {
Systm.out.println{y); // error, y not known here!

}

class InnerClassDemo {
public static void main(String args(]) {

Outer outer = new Outer():

outer.test () ;
| v

an instance variable of Inner. Thus it is not known outside of

Here, y is declared as towry()
. by showy().
that class and it cannot be used by d classes declared within an outer class

Although we have been focusing on nested :
scope, it is lgnossible to define inner classes within any block scope. For example, you

can define a nested class within the block defined by a method or even within the body

of a for loop, as this next program shows.

// Define -an inner class within a for loop.

class Outer { _
int outer_x = 100;

Scanned with CamScanner

: Java™ 2: The Complete Reference

void test ()
for (int
class

void display () .
n.out.println("display:

}

Inner

{
1 -0

Syster

{2 10;

rmner |

inner =

{

new Inner():

inner.display();

}

class InnerClassDemo {

public static void main(String args(])

Outer outer = new Outer();

outer.test () ;

14+4)

: outer_x =

" + outer_x);

{

The output from this version of the program is shown here.

display: outer_x = 100
display: outer_x = 100
display: outer_x?; 100
display: outer_x = 100
display: outer_x = 100
display: outer_x = 100
display: outer_x = 100
display: outer_x = 100
display: outer_x = 100
display: outer_x = 100

While nested classes are not used in most day-to-day programming, they are
particularly helpful when handling events in an applet. We will return to the topic
of nested classes in Chapter 20. There you will see how inner classes can be used to
simplify the code needed to handle certain types of events. You will also learn abou
anonymous inner classes, which are inner classes that don't have a name., ‘
One final point: Nested classes were not allowed by the original 1.0 specification for

Java. They were added by Java 1.1,

o Scanned with CamScanner

